AD-RL66 736 ﬂPPLlCﬂTIOI OF YBJ (YOULA BONGIORNO AND Ji COITIG. 172
EORV TO THE INITIAL RESPONSE PROBLEII(U) ﬂll FORCE
F TECH HRIBHT-PM’TERSON AFB OH R
UNCLASSIFIED ﬁFl T/CIINR-86-4

- . -. e




T e

AR P I IEIF SN RS- 2D ISR IF SIS Sl I I XS RE ISP DN I e
>n
n
Pu
e

lf wg 25 ‘
L2 £ i 12z
=iE
“" TR
= s

N
(&

L e

MICRNCOP CHART

e e
()

m et .
PSS R )




D S o
&V-, vy el . ¢ - o
+7 w‘-;
L SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered). ! o~ .\_
L. REPORT DOCUMENTATION PAGE " e READ INSTRUCTIONS %
' 1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER 3'::
. AFIT/CI/NR 86-46T
. ‘ 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED E"
T Application of YBJ Control Theory to the Initial THESTS/DTSSERTATION N
v , Response Problem \:\
‘. ‘ 6. PERFORMING 03G. REPORT NUMBER :
(D 7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)
L oyt Jay Warden !
™~ T
‘D . PERFORMING ORGANIZATION NAME AND ADDRESS 10. ':SgiR&AwOERLKEPJE:!TT,NPUR"‘OBJEESST, TASK ~:_:E:
o) \FIT STUDENT AT: L
™ Arizona State University . i
'_: < I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE ‘—
- | AFIT/NR 1986 S0
. Q WPAFB OH 45433-6583 13, NUMBER OF PAGES N
. 101 Fe
b < l. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 15. SECURITY CL ASS. (of this report) »'«
UNCLASS L
15a. DECL ASSIFICATION DOWNGRADING T
. SCHEDULE o
6. DISTRIBUTION STATEMENT (of this Report) :'_.‘_;_
i APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED E
S e
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from Report) .-
‘
s C? /- i
. 18. SUPPLEMENTARY NOTES s
S _ i E. WOLAVER Hahs
. APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1 m Research and W’é iR
: Professional Development K.
; AFIT/NR, WPAFB OH 45433-6583 .
; 19. KEY WORDS (Continue on reverse side If necessary and (dentify by block number) - .\
X DT o
. O ELECTE o
1D e |
= APR 2 2 1986 |¢
Do ud el
F. : .m_J 20. ABSTRACT (Contlnue on reverse side If necessary and identily by block number) .
S N
D e
- L
- AN
N , w0
o
) DD ":2:"73 1473 EDITION OF ! NOV 65 1S OBSOLETE | LJ

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




atel s A

......

- . - - - . . M N - - ., -
B N I P I I R PRSP PP Py . .y e

ABSTRACT

Two theorems were derived. First, the Initial Response Theorem

describes the necessary and cufficient conditions for a series compensator
for a feedback control system to simultaneously stabilize the system,

and cause the initial system response to achieve prescribed constraints.

A single input-single output, continuous time linear system is considered,
with a delta function driving any rational transfer function in the
s-domain being the system input. Design constraints can be placed on

the initial response value, and on any of the derivatives (from the right)

of the initial response. Second, the Initial Response Parameterization

gives a parameterization of the complete set of compensators that will
meet the given constraints whenever the conditions of the Initial
Response Theorem are met. The area of Youla, Bongiorno and Jabr {YBJ)
Control Theory was used for the derivations, but first required a
system transformation to convert the initial value problem to one of

stability.
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CHAPTER I
INTRODUCTION

1.1 Objective

The results of this thesis are two theorems. The first is named

the Initial Respdnse Theorem (IRT), which describes the necessary and

sufficient (N & S) conditions for a series compensator for a feedback
control system to simultaneously stabilize the system, and cause the
initial system response to achieve prescribed constraints. A single
input-single output, continuous time linear system is considered. The
system can have as its input a delta function driving any rational
transfer function in the s-domain. Design constraints can be placed
on the initial response value, and on any of the derivatives of the
initial response, i.e., as time approaches 0+ (0 from the positive

side). The second theorem is termed the Initial Response Parameterization

(IRP), and it gives a parameterization of the complete set of compensators
that will meet the given constraints whenever the conditions of the

IRT are met.

The motivation for this work was the intuition that the shape of
the transient response can be controlled by controlling the initial
response. Thus, if the initial response and the asymptotic stability
can be simultaneously controlled, the designer will have a tool that

can help meet both transient response requirements and stability

requirements simultaneously. Examples of this technique are given in Q}j

Chapter 1IV. w

The theorems are derived in essentially two stages. First, the ?7§
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given system is modified to another system. Any compensator causing
the modified system to be stable will also cause the original system
to meet the desired constraints. Then, the relatively new area of
YBJ control theory, which is introduced in Section 1.3, is applied to
the modified system. This leads to the N & S conditions, and the
parameterization describing the complete set of compensators that

i will stabilize the modified system, and therefore also meet the

' constraints given for the original system. The constraint of system

, stability is achieved by application of previous results in YBJ (10).
the initial condition constraints are met via the application of new
results in YBJ derived in this paper. All of the results assume that

the plant considered is a proper rational function.

1.2 Example

§—f 1 | c(s) > 5}1 -

Figure 1. Example System

As an example, consider the system shown in Figure 1. The input
is an impulse, which is represented by a delta function driving a
transfer function of value 1. The plant has a transfer function

.1
p(s) = =1 <1.1>
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and is unstable. It is desired that the system Hv u(s) be stable,
2°1
! and that the initial response v2(0+) equal 3.
i The parameterization of the complete set of compensators that
stabilize the feedback loop has been found before this thesis (10).
!
1 Without going into further detail at this point, it will suffice to
! state that this parameterization leads to c(s) of the form
' -1) ‘
[ -w(s) %5——7-+ 2
: c(s) = SII <l.2>
W(S) -(S_+1—)_ +1

where w(s) is any stable function.

The compensator must also meet the constraint v2(0+) equal 3.

The system has the transfer function

H(S) =1 - 1C+§S)F§Sg - <1.3>

If <1.1> and <1.2> are substituted into Equation 1.3, then after some

manipulation
-1 2 <l.4>
H(s) = -w(s) = + = :
Also, according to the Initial Value Theorem
Tim {sH(s)} = 1im {h(t)} <1.5>
S0 t-0t

where H(s) is the Laplace Transform of h(t). Thus, it is also required

that
. -1) . 2s
Tim {-w(s) s(s-1) + } =3 <1.6>

in order to meet the initial response constraint. One could then search
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4
"brute force" for stable w(s) which satisfy Equation 1.6 in order to
solve the problem, and could achieve particular solutions such as
_52
w(s) = 5 <1.7>
(s+1)

However, the IRP in Chapter III yields the complete set of compensators.
The calculation is not difficult for this problem, and will be omitted

here to keep the example brief. But, when applied, the IRP yields

2
w(s) = =2 ;gs - e(s) <1.8>

(s+1 s+l

as the complete parameterization, where e(s) is arbitrarily stable, and

c(s) is again described in Equation 1.2.

1.3 YBJ Control Theory

The foundation of YBJ control theory is two papers published in
1976 by Youla, Bongiorno, and Jabr (16, 17). A result of their work
was the complete parameterization of the set of stablizing compensators
for a multivariate feedback system, based on a new approach in feedback
system design., Since then, this new approach has led to similar
parameterizations of other problems, such as the tracking and disturbance
rejection problems (9, 10, 11), and also to results in optimization

theory based on the parameterizations found (16, 17).

The basic approach to discovering the parameterizations (other
than the original stability parameterization) has been to arrange the
mathematics so that they, too, were a stability problem. Thus similar,

though different approaches to the original stabilization problem could

ORISR PIPL WY W WL WAL WL P N W W W i e S i P S TP P S
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be used. This then is the reason for the system transformation used
in the derivation of the theorems in this paper, as will be seen in

the following chapters.

The key to the YBJ approach is to use a "stable fractional
representation” for the transfer functions considered. This is
opposed to the "polynomial fractional representation" used classically.

For example, the function r(s) would classically be written in the form

r(s) = g—%%)y <1.9>

where p(s) and q(s) are polynomials. But, YBJ requires that r(s) be

written
n_ (s
r(s) = arég; <1.10>
r

where nr(s) and dr(s) are both stable, and have no common (closed) right
half-plane (RHP) zeros, including infinity. This is termed "RHP
coprimeness", or simply "coprimeness". Thus, if m(s) is a Hurwitz

polynomial of order equal to the order of r(s), then

n(s) = %%%%’ <l.11>

and

d.(s) = %% <1.12>

are possible representations for YBJ. Then, in the case that nr(s)
and dr(s) are RHP coprime, YBJ dictates that there must exist stable
ur(s) and vr(s) such that

un(s)n (s) + v (s)d (s) =1 <1.13>
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This new representation is the basis of the YBJ control theory.
For further introduction to YBJ, the reader is referred to (10) which

is drawn upon extensively in this paper, and to (9, 11, 16, 17, 18).

1.4 Summary of Results

§ —d t(s) e L c(s) [ p(s) —=

Figure 2. General System Configuration

For the system in Figure 2, assume that t(s) represents a given

input to a feedback system H & (s). Also, assume that the finite (real
Vo1

numbers) constraints {yo, Yyseers yj} are given on the initial time
response of the system {vg(O*), vé(O*),..., v%(O*)}, where the superscript

represents the n-th derivative, and assume that the system Hv " (s) is to
2°1

be stabilized. Then define M to be the lowest order initial response
derivative specified that is non-zero, and define j as the highest
order derivative specified, so that j > M. Also, define r{H(s)} to be
the “relative degree" of a transfer function H(s), such that

r{H(s)} = (#finite poles H(s) - (#finite zeros H(s)) <1.14>
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Next define

n_ (s)
p(s) = _p_(_)_d S <1.15>
p
and
ntﬁs)

s) = CRON <1.16>

n

tn(s) = s"+2 t(

where np(s) is stable and coprime with stable d_(s), and where nt(s) is

P n

stable and coprime with stable dt(s).
n

With the above definitions in mind, the following theorom is a

major result of this thesis.

Initial Response Theorem

For the system in Figure 2, assume that r{p(s)}>0. Also assume
that

The input t(s) has fewer than three poles at s = 0. <1.17>
or

If the above condition is not met,

then {(#poles t(s) at s=0)-3}<{#zeros p(s) at s=0}. <1.18>
Then, a set of compensators c(s) exists that will simultaneously stabilize

H (s) (without RHP pole-zero cancellations between p(s) and c(s)), and

Y21
meet the initial condition constraints {vg(0+),...,vg(0+)} = {yo,...,yj}
if and only if (iff)
r{t(s)} + rip(s)} < M+l <1.19>

and

.......................
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8
dt(s) and dp(s) are RHP coprime, <1.20>
J
which can be written (dt(s), dp(s)) = 1.

J
EOT (End of Theorem)
The proof for this theorem, as well as the resulting parameterization
for the complete set of adequate compensators are given in Chapter III.
The conditions given in equations <1.19> and <1.20> are not at altl
obvious. In practice, <1.20> should not normally pose a problem, while

<1.19> will often be the more restrictive condition.

Though a different approach will be used in Chapter III to prove
<1.19>, some intuition can be given (unrigorously) for its necessity

now. It can be shown that the system H u(s) has a relative degree

2°1
equal to or greater than that of the plant p(s), whenever r{p(s)} > 0.

Therefore, vz(s) must have relative degree
r{vy(s)} > r{t(s)} + r{p(s)} <1.21>
since the relative degree of the product is the sum of the relative
degrees. Also, the Initial Value Theorem (IVT) can be used to prove that
r{vz(s)} = M+1 <1.22>
Thus, equating <1.21> and <1.22> leads to <1.19>.
The assumptions made in equations 1.17 and 1.18 are used to
guarantee that a compensator meeting the n-th derivative constraint
will also meet the 0-th through (n-1)th constraints. However, they may
not be necessary conditions. At this time, a set of necessary and

sufficient conditions have not been found, though the given assumptions

are quite unrestrictive. If they do pose a problem, the interested
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reader is referred to Chapter III for further details. Such a
"guarantee" will be useful when applying the parameterization to be
derived later.

The remainder of this thesis is organized as follows. Chapter II
develops the system transformation, and develops a 1ist of properties
associated with the transformation. Chapter III applies the YBJ theory
to the transformed system to discover the Initial Response Theorem and
the resulting parameterization. Next, Chapter IV contains design
examples using this theory. Finally, Chapter V contains a list of

recommendations for further research on this topic.
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CHAPTER IT B
SYSTEM TRANSFORMATION N
o
2.1 Transformation Description é%
This chapter deals with the development of a system transformation ;é
that modifies a given feedback system model so that YBJ control theory 555
can be applied in the next chapter. The transformation allows for E§~
simultaneous system stability and initial response constraints to be %j
attacked with YBJ. The system is single input-single output continuous ;%
time, and linear. The system input is a delta function driving a E;E
rational transfer function. ;;;
As was discussed in the introduction, the approach to deriving .;;
parameterizations for compensators using YBJ in the past has been to ;3
look at each problem as one in stability. In some way, the algebra of K
the problem was arranged so that stabilizing some quantity would produce
the desired results. Then, the YBJ ‘theory could be used to find the
parameterization of compensators that would indeed stabilize the quantity ﬁé
in question. Thus, the intent here is to derive a general system ;;3
transformation that leads to particular quantities, which if stabilized, ;ﬁ
will cause the constraints to be met. :’f
The problem at hand may have many constraints, but essentially if
only two types. First, the feedback system must be stable. Second, gg
some initial value constraints must be met. Therefore, it is necessary E??
to derive some transformation that produces two quantities. The first Eiﬁ
will stabilize the feedback Toop when stabilized, and the second will ZE;
meet a desired initial condition constraint when stabilized. Thus, the {ﬂ'
o
5
f?%
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basic transformation concepts to be used here are as follows. First, 3
the transformation of the feedback loop preserves the properties of :f:
stability, so that stabilizing compensators in the transformed domain ;ﬁ?
o
also stabilize in the original s-domain. Because of this property,
the stability constraint can be met using a previously developed Cjﬁ

stability parameterization. Second, the transformation yields a L
system output that meets one of the initial conditions when stabilized.
Also, the transformation must have an inverse transformation, so that

the answer can be of use in the original s-domain.

2.2 Mathematical Transformation

The first step in developing the system transformation is to
develop a mathematical transformation that maps an initial derivative
response into the final value response in a new domain. For this
transformation let t and s represent the time and Laplace domain
variables of a transfer function as usual. Then, Tet t and s represent
the corresponding time and Laplace domain variables in the transformed
domain. As such, the following lemma describes the mathematical

transformation that performs the desired mapping.

Lemma 2.1

Let H"(s) be the n-th derivative of a transfer function
H(s) = L{h(t)}. If H"(s) is strictly proper, and if ﬁh(g) only has

poles in the left half plane, except possibly for a simple pole at
s=0, then

Pl
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1im {sH (s)} = 1im {h_(t)} <2.1>
s+0 n tow
= Vim (h™(t)} = Tim {sH"(s)}
t-0 S
T I | 1 n-1 1 i/n+
where Hn(i) iy H(g-) - 1};=0 mh (07) <2.2>
s = S
and
§. =é. <2.3>
Proof

The n-th derivative of a transfer function H(s) is equal to

n_l 123 4
H'(s) = sM™H(s) - 5 s"1-Tpi(oh <2.4>
'|=
n>0
where h'(0%) = 1im (L™ ni(s) 1) <2.5>
t-0*

The Initial Value Theorem (IVT) states that if H(s) is strictly proper,

Tim {h(t)} = Tim {sH(s)} <2.6>
t-0* S0

Of course if H(s) is not strictly proper, no finite initial value
exists since there is an impulse at t = 0. Then, combining <2.4> and

<2.6> leads to

Tim (h""(t)} = Tim {sH"(s)}
t-0* S+
..o+l -1 nai i, o+
= lim {s" "H(s) -t s 'h (07) <2.7>
S i=0

if H'(s) is strictly proper.
Next, define the transfer function

H(s) = L{h (2)} <2.8>
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i in another domain, with the given variables. Then, the Final Value i;
. Theorem (FVT) states that if H (s) has no (closed) RHP poles, except e
. for possibly pole at s = 0 (see (8), p. 714), then ?2
.';».:
Tim ¢h_(t)} = Tim {sH _(s)} <2.9> o
E t " 0 " B
e LA
f At this point, a change of variables is necessary to force {?
. lim (R ()} = Tim (h"(t)} <2.10> B
' oo t-0* -
k.
5 This Tink can be accomplished by forcing equality in the Laplace domain, :i:,
Ef by forcing EEI
L Tim (s (s)1 = Tim (sH"(s)3 2.11> 2>
s+0 S .
n~-1 i i -
= 1im s"M(s) - T s™hio*)y R
S0 i=0 -
If s and s are related by Ze
s=1 <2.12> :‘-
then '::
Tim %-= 0=1lims <2.13> i
S+ s-0 e
and .
n+l n-1 n-ijdooey o 11, Ml 5y Y
s H(s) - N h'(0%) vl H(g) - L A h'(07) <2.14> o
Thus, equating the values inside the brackets in Equation 2.10 dictates
that :
— 1 1 n-1 1 i+ N
sH (s) = H(Z) - £ ——=h (07) <2.15> =X
n E.n+1 S §=0 Ep i &
which leads to
- 1 1, "1 i+ -
H (s) = H(Z) - ¢ —=—h'(0") <2.16> ~
n §p+? S i=0 §p-1-1 =

- oo R
e
P A ]

o vy

W a e

............................
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Therefore, invoking Equations 2.12 and 2.16 force the equality of
Equation 2.11, and therefore also Equation 2.10, if the restrictions
described for the IVT and the FVT are met.
EOP (End of Proof)

Lemma 2.1 then is a mathematical transformation yielding a new
transfer function whose asymptotic value is equal to the initial
n-th derivative of the original transfer function response. Later
in this chapter a method of applying this to the feedback system shown
in Figure 2 will be developed so that the YBJ theory can be used to
meet the n-th derivative initial condition constraint. Also, Section
2.5 will prove that the restrictions on the IVT and the FVT will always

be met in this application.

2.3 Inversion Transform and Properties

Before applying the transformation defined in Section 2.2 to a
feedback system, it will prove useful to first define the transformation
T and its inverse 11 as follows.

fi(s) = T (H(s)} = H(Z) <2.17>

1 i) = 0 (D
The following properties associated with this transformation will also

be useful. The proofs for these properties can be found in Appendix A.

Additive Property

H(s) + F(s) = T {H(s) + F(s)} <2.18>

Note that this property also implies the subtractive property.

.................
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Multiplicative Property
H(s)-F(s) = T {H(s)-F(s)} <2.19>
Note that this also implies division.
Inverse Transform Property
H(S) = H(s) <2.20>
Transformation Stability Property
If H(s) is stable (or unstable) in the s-domain, then so is H(s) in
the s-domain, and visa versa.
2.4 System Transformation
A method of using the results of Lemma 1 to transform the system
in Figure 2 (reproduced in Figure 3, part a) will be derived. This
will result in the n-th derivative of the initial ouput of the system
. n
113+{v2(t)} <2.25>
to become the asymptotic ouput (time approaches infinity) of the
transformed system. This model will then be modified so that the YBJ
stability criterion may be used to meet the condtion in Equation 2.25.
Define the transfer functions
tn(S) = Sn+2t(s) <2.26>
~ _ 1 ~
tn(i) = 'S-n—.q t(s)
n-1 ._ ;
ra(s) =z "ot <2.27>
i=0
- n-1 i
rr(s) =T ——g vo(0%)
n j=0 N-1*1 2

Then Lemma 2.2 applies.

........................
~~~~~
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Lemma 2.2
Given the system in Figure 3, part a, and the functions described
in Equations 2.26 and 2.27, the system in Figure 3, part b, will have
an ouput Eé(t) with the property

1im {e3(t)} = 11m {v ( )} <2.28>
1o t-0t

Proof
The transfer function of the system in Figure 3, part a can be
calculated to be

- c(s)p(s)
Hvzeés) = t(S)l+c G <2.29>

Then, invoking Lemma 2.1 would require a system with the transfer

function
=2 s 1+C( ) (—) i=0 s"" ST "2

En(s) gi%)s(%)s - F;(i) <2.30>

via Equation 2.2, and invoking the multiplicative and additive properties,

as well as Equations 2.26 and 2.27.

The system in Figure 3, part b, has the transfer function

H - c(s)p(s) ., >
A ACY t(s) T3y - 7' <2.31

Equations 2.30 and 2.31 are identical, revealing that Figure 3, part b,

is in fact consistent with Lerma 2.1.

EoP

YBJ theory requires a system which, when stabilized, meets the

required constraints. The property characterizing any stable system

.............
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is that asymptotically the response approaches zero. Considering this,
if a different transfer function can be given that asymptotically
equals the response of the system in Figure 3, part b, then the
difference between these would be asymptotically zero. Therefore, a

composite system equal to this difference would be stable.

A different transfer function with the asymptotic response vS(O*)
is the step function with weight v2(0+),
(0")

(S) = <2.32>

Then, the difference leading to stability would be the transfer function

e 2 (s) = Hs < (s) - w(s) <2.33>
4n~0n— ©3n®on
But, an equivalent model for this system would be to add w(s) to

-~

;6(§), creating a new function, rn(§), as follows.

-~

ra(s)

w(s) + ri(s)

~ n .
r(s) =t —— vl <2.34>
n'= V2
i=0 s
This then leads to the following lemma.

Lemma 2.3

For the system in Figure 3, part a, let t(s), p(s), and the
initial response constraints {yo, yl,...,yn,...,yj} (yi is finite, real)
be given. Then, substitute the initial response constraints into ;n(s),

so that
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-~ ( ) n
ri{s) =%
T =0

7T Vi <2.3%

Then, the only compensators that will meet the constraint vg(0+) =Y,
which may possibly also meet the constraints {vg(0+),..., v2'1(0+)}
= {Yns--.5 Y. 1}, are those which stabilize H— — (s) in Figure 3,

0 n-1 e, e

4n"0On

part c, where rn(g) is written per Equation 2.35.
Proof

Transform the system in Figure 3, part a, to the one in Figure 3,

part b. Then, in accordance with Lemma 2.2

Tim {8,(t)} = 1im (v(t)) = vI(oh) <2.36>
oo 3'= 0% 2 2
Also, let
. Yy
W(_§_) = . <2.37>

Tim w(t)} =y

o f

and define ﬁg 2.(8) by Equation 2.33. Then, QE' 5 (s) will be
4n~0n 4n~0n

stabilized only if = = (s) {which is equal to e,(s)} and Q(s) are
®3nfon 3= -

asyptotically equal. This of course requires that

yn = Vg(o+) <2.38>

by equating Equations 2.36 and 2.37.

Therefore, consider a compensator 5(3) which leads to the system
in Figure 3, part a, with inital response values {vg(0+),..., vg’1(0+)}.

Then, use these values, and let v;(0+) =Y, for Equation 2.34. As

such, if = = (s) in Figure 3, part c, is stable, then Equation 2.38
€anCon—

applies.
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Note that the above argument does not consider the constraints
{yo,..., yn_l}. Thus, such a compensator may or may not meet these
constraints. However, if it does, then obviously these constraints
can be substituted for {v2(0+),..., v2'1(0+)} in Equation 2.34. Thus,
making this substitution, and invoking Equation 2.38 into Equation 2.34,
leads to Equation 2.35. Stabilizing the system in Figure 3, part ¢,
using Equation 2.35 therefore leads to a compensator that meets the
constraint y., and may (no guarantee yet!) meet {¥gse-e> yn-l}‘ Also,
if it does cause the system to meet {yn,..., Y. 1}, then H— — (s) must

0 n-1 e, e, =
4n~0On
be stable when defining rn(§) according to Equation 2.35.

EOP

Yan
U ®in Von N\ San
§ —= t (s) b c(s) p(s) ——

Figure 4. Final System Transformation

For the system in Figure 4, define

= $M2¢(s) <2.39>

=1 .7 N n-isl
r(s)=T"{r(s)t=: s
" " i=0 Yi

per the transformation in Equation 2.17, using the inverse transform
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and multiplicative properties, and per Equations 2.26 and 2.35. Then

y the following theorom applies.

Theorem 2.1

For the system in Figure 3, part a, let t(s), p(s), and the i

i initial response constraints {yo, Yysee- yn,...,'yj} be given, and 'jii
i define tn(s) and r_(s) per Equation 2.39. Then, the only compensators ;;j
_ that will meet the constraints v2(0+) =Y, which may possibly also meet F«
the constraints {vg(0+), v;(0+),..., vg'1(0+)} = {¥gs ¥yoeer Ypobs ;i?

{ are those which stabilize He o (s) in Figure 4. gij
hi 4n~0n i;j
Proof 7]

The additive and multiplicative properties dictate that transforming ';i

a system from the s-domain to the s-domain, and visa versa, may be K

accomplished by transforming the individual transfer functions within g

the system separately. Therefore, the system in Figure 4 is the s-domain fié

equivalent to the s-domain system in Figure 3, part ¢. Also, by the i!!

stability transformation property, these systems are either both stable, :Ej

or both not stable. Therefore, since the statement in Lemma 2.3 relies ‘é

only on the stability of the s-domain system, an equivalent statement E;J

can be made concerning the system in Figure 4. .

£0P i

With Theorem 2.1 in hand, the system in Figure 4 can be used for !53

the application of the YBJ theory to find the stabilizing compensators :E;

that meet the initial response constraints. This will be accomplished ﬁﬁé

in Chapter III. i:'
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2.5 Restrictions Due to IVT and FVT e

pe

The system in Figure 4 is the model from which a complete stabilizing DDA
parameterization is to be derived in the next chapter. However, this E;E;
model is based upon the mathematical transformation in Section 2.2, E&;
which incorporates the IVT and FVT. At that time it was mentioned jfrf
that both of these theorems have restrictions on their application. The -
intention here is to prove that this model will always be within the iii

bounds of these restrictions, so that a complete parameterization can
in fact be derived based upon it.
First consider the IVT, which states that if H(s) is strictly N

proper, then

Tim {h(t)} = Tim {sH(s)} <2.40>
t-0* S0 .
In effect, this (strictly proper) says that there must be a finite !Ef
initial value in order to apply the theorom. If H(s) is not strictly ﬁf;
proper, the initial value is undefined (infinite), and therefore equality 1;&%
cannot hold, even though the IVT will also yield an infinite initial !-;
value. Thus, this restriction simply requires that the constraints j;?
{yo, Yyseees yj} be finite. lifg
The FVT states that if H (s) has poles that lie entirely within bou
the Teft half plane, except possibly for a simple pole at s=0 (see o
reference (8), p. 714), then T
_23
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For the system model here,

H= = (s) - r!
Vonton— n

H (s) (s)

n
|
—~
wn
S
1
-
~—
(7]
—
]
7]
i |=

[}
®|
—
(7]
~—
t
w
| |=

<2.42>

4ne0n

sum of proper functions, it will be proper. Also, its poles will be

and AE' < (s) will always be stabilized. Thus, since ﬁh(g) is the

those of its components, unless some are cancelled. Therefore, it will
be stable, except for possibly a simple pole at s=0, so the FVT

restrictions will always be met also.

2.6 Summary

Stabilizing the system model in Figure 4 has been shown to be
N & S to guarantee that the n-th derivative initial condition be met,
where the 0-th through (n-1)th initial conditions could possibly also
simultaneously be met. It will be shown in the next chapter that
meeting minor restrictions will guarantee the first n constraints are

met simultaneously when meeting the n-th is accomplished.

Another feature of this model is that the feedback loop portion
of the system is identical to that in the original system. This is
important since it is also desired to stabilize this loop, and convenient

because previous work in YBJ (10) has already solved this problem.
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CHAPTER III
INITIAL RESPONSE THEOREM AND PARAMETERIZATION

3.1 Introduction

The IRT and IRP are derived in this chapter. The proceeding

derivations are based on the system in Figure 4 of Chapter II.

3.2 Definitions and Properties

Some general definitions and properties from reference (10) are

needed for the work in this chapter.

Definition 3.1

Given two transfer functions, x(s) and y(s), then y(s) divides x(s) if

x(s)

y(sT = y'(s) <3.1>

where y'(s) is stable. Notationally, this is written y|x.

Definition 3.2

Two stable transfer functions x(s) and y(s) are RHP coprime, or simply
coprime, if they have no common RHP zeros. Notationally, this is written

(x,y) = 1.

Definition 3.3

The transfer functions x(s) is said to be miniphase if it is stable,

and has a stable inverse.

Property 3.1

If x(s) and y(s) are stable and coprime, then there exist stable u(s)
and v(s) such that
u(s)x(s) + v(s)y(s) =1 <3.2>

Also, if <3.2> is valid for stable x(s) and y(s), then they are coprime.
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Property 3.2
Let
x_(s)
r(s) = -2
.Yr(S) <3.3>
where xr(s) and yr(s) are both stable, but may not be coprime. Also, let
n (s)
r(s) = <=
dr(Sj <3.4>

be a coprime stable fractional representation for the same r(s). Then

there exists a stable k(s) such that

n.(s)k(s)

x,(s)

and

yp(s) = d.(s)k(s) <3.5>

Theorom 3.1 - Stabilization Theorom

For the feedback loop in Figure 2 with transfer function Hv u(s),
2°1
and therefore also for the equivalent feedback loop in Figure 4 with

transfer function Hv u (s), let the plant have a coprime fractional
2n"1n
representation
n_ (s)
p(s) = 39(—y <3.6>
D 3

There then exists stable up(s) and vp(s) such that

up(s)np(s) + vp(s)dp(s) =1 <3.7>

Then for any stable w(s) such that w(s)np(s) + vp(s) is not identically

zero, the compensator

{-W(S)dp(S) + qp(S)} n.(s)

c(s) = Wi (sT ¥ (81T~ 48] <3.8>

stabilizes the feedback loop and yields a coprime fractional
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representation on ;i?
I {n (s)n (s)} ]
) p(s)c(s) = d (s)d ()13 <3.9> R
i p~'c b
X ey
. Conversely, every such stabilizing compensator is of this form for "
some stable w(s). Note that Equation 3.9 guarantees that there are EE;
no pole-zero cancellations between the plant and the compensator. }
fj
Property 3.3 i{
. For the same feedback loop, if c(s) is described by Equation 3.8 :f}
3 then e
- ;{'n
H (s) =H (s) = -w(s)n (s)d (s) + u (s)n_(s) <3.10> &3
- voii Ven'ln PP PP =
; 3.3 Problem Formulation ;}i
Both the feedback loop and the entire system in Figure 4 must K
be stabilized. Theorom 3.1 describes the parameterization stabilizing ?¥$
the feedback loop portion, so the desired compensator stabilizing both li?
quantities must be a subset of this form. Referring to Figure 4, define f
n_(s) :
2y
Zn(S) = e4n(S) = a—z—(s—)- <3.11> T
n -
and invoking Equation 3.10 4
: z,(s) = tn(s) {-wn(s)np(s)dp(s) + up(s)np(s)} - rn(s) <3.12> i
. where tn(s) and rn(s) are described per Equation 2.30. Thus, the =
{L objective here is to stabilize zn(s) whenever wn(s) is stable. A
22 parameterization that stabilizes zn(s) guarantees that vg(0+) = Yy
Y It may not necessarily guarantee that any other derivative constraints 08

are met, however. This problem will be considered later in this chapter.

....................................
........
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3.4 System Properties and Definitions

In this section groundwork is laid in preparation for analysis

SRR Ay
DN AN

of the system in Figure 4 and Equation 3.12, leading up to the IRT :;t
LR
and IRP. Several properties and definitions will be required. i;
From Equation 3.12, define T
ntﬁs) f;i
tn(S) = Et-(—s—)- <3.13> '
n !',
and nr( s ) "‘
= n
"(s) = g7 a5
n
to be stable coprime fractional representations of tn(s) and rn(s). '
As such, by Property 3.1 there exist stable u's and v's such that
utgs)ntﬁs) + vtgs)dt(s) =] <3.14> F.
n e
and
u(s)n (s) +v (s)d (s) =1 o
rn rn rn r‘f'l f*‘
Then, based on the assumption that the plant is a proper rational &;}
function, the following property holds. o
X\
Property 3.4
The plant and rn(s) are such that »
(d(s),d (s)) =1 <3.15>
e E
and therefore there exist stable U, p(s) and v, p(s) such that $i
n n '-t':
u. p(s)dr(s) v, p(s)dp(s) =1 <3.16> o
n n n 3"
g,

AR ;_I ‘

...............................
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The plant is assumed to be proper, so that r{p(s)} > 0. Thus,
the hurwitz polynomial which would be used as the common divisor of
both the numerator and denominator to create np(s) and dp(s) must be
of the same degree as the denominator. Therefore, r{dp(s)} = 0. Such

a function could have zeros only at finite values of s.

On the other hand, rn(s) was described in Equation 2.39 to be a
polynomial in s, such that, considering that some yi's could be equal to
zero

-n<rir(s)} <0 <3.17>

If r{rn(s)} = 0, then rn(s) is identically zero, so nr(s) must equal
n

zero. Therefore,

v (s)d (s) =1 <3.18>
™ " Th
in which case dr(s) is proven coprime with dp(s) by letting u. p(s)
n n
equal zero and v (s) equal v_ (s). Also, if r{r (s)} < 0, then
nP ™n n
obviously r{dr(s)}> 0, and dr(s) has a constant as it numerator. In this
n n
case, dr(s) must be zero only at infinite values of s. Thus, dr(s) and
n n

dp(s) never have common RHP zeros, and therefore are coprime.

Eop

Definition 3.4

Define an(s) such that

(s) Mals)

n

LU=

(s)d.(a) =1 <3.19>

apls) = d,(s) B d(s) 3 Uplsing(s) + v, (s)d,
n n
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This function has the same finite zeros as the plant, and the same

finite poles as tn(s), less those that cancel.

Definition 3.5

Define bn(s) such that

(s) () nb'(‘S) (s)n (s) (s)d (s)
b = = : + d =1 <3.20>
n's dtr(ls) dbgs) “bns "bn'S Vbns bns

This function has the poles of p(s) as its finite zeros, and the same

finite poles as tn(s), less those that cancel.

The above definitions will be needed later in this chapter, and

lead to the following two properties.

Property 3.5
Invoking Property 3.2 into Equations 3.19 and 3.20 leads to the

conclusion that there exist stable ma(s) and mb(s) which satisfy the
n

following. "
mags)nags) = np(s) : mags)dags) = dtgs)

<3.21>
mbﬁs)nbss) = dp(s) : mbss)dbﬁs) = dtgs)

Property 3.6

The functions ma(s) and mb(s) are coprime.
n n

Proof
Per Equation 3.7

up(s)np(s) + vp(s)dp(s) =1

Then, substituting for np(s) and dp(s) from Equation 3.21 yields

F
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u (s)m (s)n_(s) + v (s)m(s)n (s) =1
P a4 3 P bn bn
{up(s)nags)}mags) + {vp(s)nbﬁs)}mbgs) =1 <3.22>
which proves ma(s) and mb(s) are coprime by Property 3.1.
n n
EOP
Definition 3.6
Define dc(s) as follows.
n
dy(s)
_.'n
dC(S) = m <3.23>
n a,
Property 3.7
The function dc(s) is stable.
n
Proof
By definition
dbgs)
d.(s) =5 s)
n a,
Multiplying by one, in the form of Equation 3.22 leads to
dy (s)
d (s) = —F— {u_(s)n_(s)m_(s) + v_(s)n_(s)m_(s)}
o maLsi p a " ag p bn bn
d (s)u_(s)n_(s) + db’(‘S)Vp(S)nb’(‘S)mb’(‘S) 3.24
= sju_(sjn_\s <3.28>
bn p a, mags)




; 6(5) = di(oh (s s) » ey
s) = s s) +
Ch bn up S "an dbg§7
dcﬁs) = dbﬁs)up(s)nags) + vp(s)nbﬁs)daﬁs)

EQP

n

n

Property 3.8

finite poles and zeros of the plant.

are used to analyze Equation 3.12.

Two more properties will be

Then, substituting Equation 3.25 into Equation 3.24 yield

which is stable since it is the product and sum of stable functions.

Note that qualitatively dc(s) can be thought of having as its

finite zeros the finite poles of tn(s) that are not common with the

needed concerning dc(s) before the preceeding definitions and properties

<3.26>
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Proof

From Equation 3.21

mbﬁs)dbﬁs) = dtﬁs) <3.27>

and from Definition 3.6

dels) = mtey

n a

or

d (s)m_(s) = db(s) <3.28>
n n n

Therefore, substituting db(s) in Equation 3.28 into Equation 3.27 yields
n

m (s)mb(s)dc(s) = dt(s)
n n

aI'1 n

EOP

Property 3.9

The function d _(s) is coprime with the quantity n_(s)n_(s)n_ (s),
Ch a, bn tb
so that there exists stable us(s) and vs(s) where
n n
us(s)na(s)nb(s)nt(s) + vS(s)dc(s) =1 <3.29>

Proof

This proof is in four stages. First, (dc(s),nt(s)) = 1 is proved
n n

as follows.

ut(s)nt(s) + vt(s)dtas) =1

n n n

A
THERS

LA

TR
‘,".‘;n L
A

é-
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:§:§
» T
and invoking Property 3.8 leads to ;;?
{ug(shiny(s) + (v (s)m (s)m (s)}d (s) = 1 <3.30> R

n n n n n n oS
Next, (d_(s), n_(s)) = 1 is shown as follows. o
Cn bn AN
o=

u (s)n (s) + v (s)d (s) =1 et
bn bn bn bn i

and substituting for db(s) from Equation 3.21 yields ;;ﬁ

n <

3

u (s)n (s) + v, (s) ——{}—T =1 e

by Pp b, mbns -
Then, substituting for dt(s) according to Equation 3.26 leads to ]
n e
{u (s)in (s) + {v (s)m_(s)¥d (s) =1 <3.31> N

bn bn bn 4 n ;
Thirdly, (d_(s), n,(s)) = 1 can be shown as follows. B
n n N

u(s)n_(s) + V_(s)d_(s) = 1

4 9 4 3 A

, .
and substituting for da(s) according to Equation 3.21 and invoking —
n
Equation 3.26 leads to }{Ei
dy(s) e

u(s)n_(s) + v (s) —~=1 e

a " "a a, maisi S
{u_(s)in_(s) + {v_(s)m (s)}d (s) =1 <3.32> itlf

2 4 4 bn n :51.
Finally, multiplying the three preceeding results together Teads to !!ﬁ
-_.".:,
the following result. Note that to save space, the variable s and A
subscript n have been omitted from the equations. ;j§7
.
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[y
it

1 x1x1

{utnt * vtmambdc}{ub"b * vbmadc}{ua"a * vambdc}

Pl M M

= {ugnpupng + uenevpm d, + vem md ugny

* vtmambdcvbmadc}{ua"a * Vambdc}
1= {utubua}"a"b"t + {ut"tub"bvamb

+ ut"tvbmaua"a + utntvbmadcvamb

+ vtmamb”b"bua"a + vtmambdcub"bvamb

+ Vtmambvbmadcuana + Vtmambdcvbmadcvamb}dc

The quantities inside the brackets are stable since they are the products

and sums of stable functions. Therefore dc(s) is coprime with the
n

quantity n_{s)n_{s)n_(s).
3 by Tty

EOP

3.5 System Analysis

Using the preceeding definitions and properties, Equation 3.12 will
now be analyzed to find the N & S conditions that guarantee stability
of both zn(s) and wn(s) at the same time. The following property is
presented as an intermediate step towards more specific criteria for

stability.

Property 3.10

Equation 3.12 admits stable zn(s) and wn(s) if and only if

7 NI Y

: up(s)np(s)nt£5) - xp(s)
Qn(s) = m,(s)
n

<3.33>
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and .
) up(s)np(s)ntgs) - xn(s) N
kn(s) = mb(S) <3.. >
n
are stable, where
nrgs)dtgs)
Xn(S) = —mg)—— <3.35>

n

and where xn(s) is stable.

Proof

Equation 3.12 is rearranged as follows.

z(s) = tn(s){-wn(s)np(s)dp(s) + “p(s)"p(s)} - v (s)
nt(s) nr(s)
= tnsy {-wn(s)np(s)dp(s) + “p(s)"p(s)} . E"%ET
r
" n
zn(s)dtgs)drﬁs) = "t£5)drn(5){'wn(s)"p(s)dp(s) + “p(s)"p(s)}
- nrgs)dtgs)

and

zn(s)dtﬂs)drgs) + wn(s)np(s)d (s)nt (s)drﬁs) - up(s)np(s)nt(s)dr(s)

P n

n n
= -n(s)d.(s)
n n. -nr(S)dt(S)
Zn(s)dtgs) + wn(S)np(S)dp(s)ntgs) - Up(s)"p(s)"tﬁs) = grﬁsSn

‘.
2
r!.
'
r
.

A AANRAAAS |

v
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xn(s) must be stable since it is equal to the product and sum of stable
functions when zn(s) and wn(s) are stable. Then, substituting Equations
3.26 and 3.21 into the above equation and rearranging leads to (omitting
the variables and subscript n)

zmambdC +wm.n.mnn, - upnpnt = -X

(zdc + w"a"b"t)mamb = upnpnt - X

unn, - x
' - ppt
zdc + wnanbnt T <3.36>

If zn(s) and wn(s) are stable, then the left side, and therefore the
right side of Equation 3.36 is stable. Also, in this case, if Equation

3.36 is multiplied by either ma(s) or mb(s)

n n
unn, - x
- PPt
(zdC + w"a"b"t)ma m k <3.37>
unn, - x
(zdc + w"anb"t)mb = -lli%gi———-= g <3.38>
a

the left side of the equation is still stable. Therefore kn(s) and
gn(s) are stable. Thus far we have proven that in order for a solution
to exist, the right side of Equations 3.36, 3.37, and 3.38 must be
stable. To prove that stable kn(s) and gn(s) is sufficient for the
existence of stable zn(s) and w(s), first multiply the right side of

Equation 3.36 by one, in the form of Equation 3.29.

+ vsdc}

-_ppt "~
zdC + wnanbnt {un.n nt

(unn, - x)v (unn, - x)u
-~ pDt s ppt 5
{ m.m e + { mamb }nanbnt

) 'ANE.":"."' R ‘d' v
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Therefore, if Equation 3.36 is stable, then particular stable solutions
obviously exist for zn(s) and wn(s). Also, <3.36> is stable whenever
gn(s) and kn(s) are stable. This can be proven by multiplying by

Equation 3.22, as follows.

unn, - x unn, - x
ppt - ppt {unm +vnm}
m_m m, my paa pbb
unn X unn, - x
—_L.Lt__un +_EL_t_._.vn
pa m pb
= kupna + gvpnb <3.39>

Thus, if kn(s) and gn(s) are stable, the right side of Equation 3.29
js stable, and therefore, also the Teft. Finally, to show that kn(s)

and gn(s) must be stable if 3.36 is stable, let

up(s)np(s)ntﬁs) - xn(s) .
m (g)m (S) n(S) <3.40>
a b
n n
where zé(s) stable. Then multiplying by ma(s) yields
n
kn(s) = mags)zé(s) <3.41>

which must be stable if za(s) is stable. Also, multiplying <3.40> by

(s) leads to
mbn

g,(s) = mbr(\s)zr',(s) <3.42>

which is stable. Therefore, it is both necessary and sufficient that

x (s), kn(s) and gn(s) are stable in order for zn(s) and wn(s) to both

n
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The above property defines the basic mathematical commodities that

must be stable in order for a solution to Equation 3.12 to exist.

.
.".'-".;! "f.'"
AP .

However, the commodities are derived mathematically from the original
system, and give a designer no "feel” as to their meaning. In practice,

one would like the necessary and sufficient conditions to be related

B O

simply to basic system properties which are not derived mathematically.
With this goal in mind, the quantities given in Property 3.10 are

further analyzed as follows.

Property 3.11

X, (s)
¥ mblsi

4 n

is stable.

Proof

Again, omitting the variable s and subscript n for compactness

- Then, using Property 3.8 yields

X . nrmambdc - nrmadc
my drmb dr

ettt T e e e e e T e e e e et e e e e e e e e et LT e et

..
R

~

"I"

.
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r
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Multiplying by one in the form of Equation 3.16 leads to

d

nrma c

X
= = d + d
mb dr {urp r Vrp p}
nmdyv_d
- racrpp
"rmadcurp * dr

Then, substituting for dp(s) according to Equation 3.21 leads to

nrmadcvrpmbnb

m_d + —
"r a curp d Vep"

- "rmadcurp + xvrp"b

39

<3.43>

The right side of Equation 3.43 is stable, and therefore so is the left.

EOP

Property 3.11 in itself provides no further immediate insights,

but it does lead directly to the following lemma which does. f
Lemma 3.1 z
Equation 3.34 admits stable solutions iff i
(d.(s),d (s)) =1 <3.44> 3”

t.>’ %

If this is the case, then there exist stable u, p(s) and v, A

n ]

such that &

Uy p(s)dt(s) * Vv, p(s)dp(s) =1 <3.45> 3;‘

n n n =

o

‘.

;t
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Proof
f Rearranging Equation 3.34 as follows,
j ) up(s)np(s)ntﬁs) - xn(s)
. knls) = ()
n
up(s)np(s)ntgs) xn(s) e
= m_(S) “m sy <. 80>
" bn bn
xn(s) ] up(s)np(s)ntﬁs)
kn(s) + m (S) - m (S) <3.47>
bn b

If kn(s) is to be stable, then the left side of <3.47> is stable by

invoking Property 3.11. Therefore, the right side must be stable also.
Stability of the right side of <3.47> sufficiently guarantees stability
of kn(s), since in this case Equation 3.46 represents kn(s) as the sum

of two stable functions.

Referring to Equation 3.44, if either dt(s) or d (s) are miniphase,

P
n
then they are obviously coprime. This can be proven by multiplying the
2 miniphase function by its inverse (yielding 1) and the other function
by zero. Thus, we have narrowed the proof down to the case where both

functions have zeros in the RHP,

Equation 3.20 effectively cancels the common zeros between dp(s)

and dt(s) in creating nb(s) and db(s), which in effect are then equal
n n n

to the first two functions less the common zeros. Then, by Equation 3.21,
d (s)
d (s) "t
= = n
mbis) nbls) dbls)
n

n

L /0 ". LA ". ". ".
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Thus, mb(s) is the original function divided by itself without the
n

common zeros, yielding a function only containing all zeros that are

common between d _(s) and d,(s).
p t,

If dt(s) and dp(s) are not coprime, then the above argument dictates
n

that mb(s) has RHP zeros, and is not miniphase. Then, to stabilize
n

<3.47>, it is necessary that (m, |u ). But, dp(s) is coprime with
n

nn

PPt
, D

up(s)np(s) ecause

{l}up(s)np(s) + {vp(s)} dp(s) =1

Thus, mb(s) is also coprime since it only has zeros from dp
n

Therefore, mb(s) must divide nt(s), and in order for this to occur, it
n n

must have common zeros. But, mb(s) also derived its zeros strictly
n

from dt(s) which has no common RHP zeros with nt(s). Therefore, mb(s)
n n n

can not divide nt(s). This proves that mb(s) must be miniphase, also
n n

(s).

proving that dp(s) and dt(s) must be coprime.
n

EOP

Lemma 3.1 provides the necessary and sufficient condition in
order to stabilize Equation 3.34. It is interesting to note that the
lemma simply requires that the plant not have any common RHP poles
with the input, less perhaps up to (n + 2) poles at s = 0 of the input.
For most systems, this of course should present no difficulty, and

therefore is not a very strict condition. The condition necessary to
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42 i
stabilize Equations 3.33 and 3.35 must still be derived. The following F—
property leads towards Lemma 2, which does this. “-::
4
5.
Property 3.12 [sf
, If kn(s) is stable, then gn(s) is stable iff dr(s) divides dc(s), F
: n n
- in which case xn(s) is also stable.
I Proof ;
?. If dr(s) is miniphase, it will always divide dc(s). Attention
- n n =i
. must then be focused on the case where it is not miniphase. Then,
using Equation 3.21 -_.
u (s)n_(s)n.(s) u_(s)m_(s)n_(s)n.(s) ;;i,;
p p( : t _ P a (a? t i
m, (s m_(s
4, 4 E
= u_(s)n_(s)n.(s )
INOINCLNG
which is stable. Thus, rearranging <3.33>, "\ -
up(s)np(s)ntr('s) - X (s) o
Ins) = m_(s] o
n -
x (s) 3
- n B
= uplsing(sing(s) - 5 rzy <3.48>
n n a,
(5) + u (s)n_(sn,(s) = - 0 3.49 =
g (s) +u(s)n_(s)n.(s) = - <3.49>
n ] an t:n man(si -;~
Equation 3.49 shows that the right side must be stable if gn(s), and
therefore the left side, is stable. Equation 3.48 shows that if R
-
xn(s) DGR
maisi "
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is stable, then so is gn(s). Thus, stabilizing this term is necessary
and sufficient to stabilize gn(s). Then, invoking Equations 3.35 and
3.26 leads to

xn(s) nr(s)dt(s)

- _.n n
ma£§7' drgs)mag§)

(s)mags)mbgs)dc(s)

n n
d}gs)mags)

My

( d
nrns)mbﬁs) cr(ls) .
d.(s) '
n

which must be stable. Analyzing <3.50>, one notes that dr(s) mus t
n

divide the numerator, since we are concerned with dr(s) not miniphase.
n

But, it can not divide nr(s) even partially since they are coprime.
n

Also, in the case that kn(s) is stable, during the proof of Lemma 3.1,

ikt Sl Y

it was shown that mb(s) is miniphase, so dr(s) cannot divide mb(s) either.
n

n n

Therefore, in order for gn(s) to be stable when kn(s) is stable, dr(s)
n

must divide dc(s). Note that this condition also guarantees xn(s) is
n

stable, since
d.(s)
xn(s) = nr(s)ma(s)mb(s) a*%;y

n n n Y‘n

EOP

The above property still does not relate directly to system

quantities, since dc(s) is derived. Thus, the following lemmas is given,
n
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whose proof further anailyzes the condition in Property 3.12 in order to

determine what is physically meant by the statement.

Lemma 3.2

If kn(s) is stable, then gn(s) and xn(s) are both stable iff

r{t(s)} + rip(s)} < M+ 1 <3.51>
where M is the lowest order initial derivative constraint not equal to

zero, i.e., Yi = 0 for i < M, and Yy # 0.

Proof
If kn(s) is stable, then by Property 3.12 gn(s) and xn(s) are

stable iff (d_ |d
"n' Cn

). Thus, this condition must be analyzed to see

when it occurs.

Before proceeding further however, the following shorthand notation
js introduced which will prove useful. First, let OS(n) represent a
stable (hurwitz) polynomial of order n, and let Ou(n) represent a
general polynomial of order n, where n is an integer. In this notation
if n is less than zero, then

0(n) = E(l—n)' <3.52>
Equation 2.39 defined
n .
r (s) =z sh-1+1 Ys
i=0

and tn(s) = s"+2t(s)

Let M be the lowest degree initial response constraint not equal to

zero, so that Ym is not zero, but {yo,...,yM_l} =0

.........................................................

........
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Then,
= N-M+l - _
rn(s) = s Yyt sy, Ou(n M+1) <3.53>
The coprime representation of rn(s) is then
0 (n-M+1)
u n (s)
Osin-M+1) ™
l"n(S) = Ou(n-M+1) = ———T——— = m
Osin—M+15 n
and
_ 1
drr(‘S) = m <3.54>
The plant is such that r{p(s)} > O by assumption. Therefore, the
coprime representation of p(s) is developed as follows.
0 (x.)
. _u
p(s) 5;Tyﬁ7—' Xp < ¥p
Ou(x ) )
0 (v n_ (s
g\
= = s 3.55
p(s) —GZTVEY_ dp 5 Xp < ¥p < >
0,Ty,)
For the coprime representation of tn(s) = sn+2t(s), it is necessary
to know how many poles at s = 0 t(s) has. Thus, let
0 (x,)
t(s) = =t <3.56>

c
s” - 0,(y,)

where c is a non-negative integer, and where Ou(yt) represents a
polynomial that is not divisable by s. Also, if ¢ is positive, then
Ou(xt) is not divisable by s. Then,
n+2-¢
Ou(xt) _ s Ou(xt)
0]

+2
N

t (s) =
T s, (y,)
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There then are two possibilities for dt(s), as follows.
n

d.(s) = %y <3.57>
t, Os(max{yt,n+2-c+xt})
when
n+2-c > 0
and
d,(s) = 0, <3.58>
t, 0, (max{x,c-n-2+y })
when
c-n-2 > 0
The remainder of this proof must then be in two parts, since it is
dependent on dtﬁs). First, consider when <3.57> applies. Then,
an(s) = ggéé;-= np(s) H—%ET
tn tn
_ Ou(xp) Os(max{yt,n+2-c+xt}) 3,505

0 (y,) 0,(yy)
Coprime representations do not require cancellations between stable poles
and zeros, but it does between unstable ones. Thus, let A be the number
of common unstable poles and zeros in <3.59>, which must be contained
within Ou(xp) and Ou(yt)' Thus, let Ou(x -A) and Ou(yt-A) represent

p
the just mentioned polynomials without the A common terms, so that

0 (x -A)O_(max{y,,n+2-c+x,})
an(s) =5 0 ? —A)Ot( ) :
u MYy

........
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N The proper coprime representation of na(s) is then s
n E_'
o
0 (x -A)0 (max{yt,n+2 c+xt}) AL
na(s) 0 (max{x -A+max{y,,n+2-c+x, },y A+y }) <3.60> &
n t t 7t ‘.
To condense the equations, it will prove useful to let ‘\
max{yt,n+2-c+xt} = B1 <3.61>
and ,".:‘
- B} - - B
: max{xp A+max{yt,n+2 c+xt},yt A+yp} B2 i
; so that :
0. (x -A)O_(B) T
1
2 n(s) = 4P S <3.62> -
g 4, OSBZT
and S
S) = .‘;:
tn OSIBIS E
m(s) = : (Z) i} gu(xe) - (Xofgg)(ﬂ
n a, sYp u'’p sl
0,(A)0(B,) s 63 1_;
—(—J—(‘T <3.63> :
0 yp Os B1 :
To calculate d_(s), Equation 3.26 is used, so that k.
n
(s) ) o
d (s) =
Ch manl s }mbnl s) P
Earlier in this paper it was shown that mb(s) must be miniphase in order
5 R
! for a solution to exist. Thus, let Xp = Yp» SO that -I;:;
(s) O—T—Tos(xb) 3.64 ‘h"'.*
mis) = <3.64> NS
bp sYp ‘.-1-\:1
i
T
)




...............

48 L
and -
: o (e - e 05008y O (yy) 7
- <y Os(Bl) Ou(A)OS(Bz) OSbe) :ti
' ..{-
0, (y,-R)0 (¥ )0 (B))0 (yy) . 8
05(8,)0,(B,)0(x,) o
Finally, dr(s) must divide dc(s), so that &li
n n i
B
4els) o (y.-R)0_(y )0, (B,)0_ (¥, )0 (n-M+1) =
. n____uvt s'Vp/"s'"1"s b s <3.66> o
¥ drTs) OS(Bl)OS(Bz)OS(be .
n e
must be stable. Note that the denominator contains only LHP poles, Efﬁ
since it is the product of stable polynomials. Therefore, the quotient ;i
js stable iff the degree of the denominator is equal to or greater than
the degree of the numerator. This requires that
Bl+Bz+xb 3_n-M+1+yt-A+yp+Bl+yb |
or, cancelling 1ike terms and noting that Yp = Xpo Jj}
82.3 n-M-1+2+Yt-A+yp E?-
or :}.
Then analyzing <3.67> further, 3
By = yt+yp-A+n+2-B2 ff
N = yt+yp-A+n+2-max{xp-A+max{yt,n+2-c+xt},yt-A+yp} %2
- N
‘ - . - - - u"
. = (yt+yp-A+n+2)+m1n{-xp+A-max{yt,n+2 c+X, },-y *A Yp! i
- -
- since -max{a,b} = min{-a,-b}. Then, adding the term inside the e
: o
. ‘:j:‘;
P
7
:;-)‘:‘:V_;:P:. A.‘
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parenthesis to both sides inside'the min function,

B3 = m1n{yt+yp-A+n+2-x +A-max{yt,n+2-c+xt}, yt+yp-A+n+2-yt+A-yp}

P

o = min{ytfyp+n+2-xp-max{yt,n+2-c+xt},n+2}

= min{(yt+y +n+2-xp)+min{-yt,-n-2+c-xt},n+2}

P

= min{min{yt+yp+n+2-xp-yt,yt+yp+n+2-xp-n-2+c-xt},n+2}

= min{min{yp-xp+n+2,yt+c-x +yp-xp},n+2}_ <3.68>

t
The first quantity in the interior min function is yp-xp+n+2. But,

according to Equation 3.55, xp g_yp. Therefore,

yp-xp+n+2 = n+2

so <3.68> can be further reduced to

- B3 = m1n{n+2,yt+c-xt+yp-xp}
M+1 3_m1n{n+2,yt+c-xt+yp-xp} <3.69>
Thus, in order for dr(s) to divide dc(s), the inequality in Equation 3.69
n n
* must be met. But, M < n, so M+l cannot be equal to or greater than n+2.

Therefore, the inequality must relate to the second term within the min

< function. Also, noting that
ypre-x, = rit(s)}
and R
Yo ¥p ~ r{p(s)} =

we can finally state that the necessary and sufficient condition is that

m+l > r{t(s)} + r{p(s)} <3.70>

The above inequality is based on dt(s) according to Equation 3.57,
n




leaving the inequality based on dt(s) according to <3.58> yet to be

n

proved. This proof is similar to the one just given, and is also
lengthy, so in order to condense it many of the comments between steps

will be omitted. First, however, it will prove useful to modify <3.58>

so that
d ( ) Ou(C'n-2+.Yt) 2 0
s) = ; c-n-2 >
tn Os(max{xt,c-n-2+yt})
Then,
n(s) 0.(x.) O_(max{x,,c-n-2+y,})
- _ .S t t
a(s) = g (s) " 0_(y.) 0 (c-n-2+y.)
tn svp u t
_ Ou(xp-A )Os(max{xt,f-na2+yt})
0,(c-n-Z+y -A )Os(yp)
" (s) - Ou(xp-A )05(34)
a, OS(BSY
where

B4 = max{xt,c-n-2+yt}

B5 = max{xp-A'+B4,c-n-2+yt-A'+yp}
so
0 (c-n-2+y_ )
dy(s) = ~—57gy—
n s' 4
Then
n(s) = npls) _0,(xp) Oszs) _ 0,(A")0,(Bg)
a, nag§7 OS(}57' Ou(xp-A )OS(B4) Os(y;)OS(EAT
O I S A T g o T e T T L
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<3.71>

<3.72>

<3.73>

<3.74>

<3.75>

<3.76> e
B

............
...............




R

_ 0 (c-n- 2+yt )0 (B O b
0 ZB ]

Ou(c-n-2+yt-A')OS(XP)OS(yb)

= <3.77>
OS(BS)OS(xb)

Finally

d_(s) -n-24y -A' -
c Ou(c n 2+Yt A )Os(fp)os(yb) Os(n M+1) <3.78>

RO 0, (8570, (%,) T

Again, <3.78> only reqguires

Bs+xb_1 c-n-2+yt-A +yp+yb+n-M-1+2

or

M+l > C+yt+yp+yb-A'-xb-85 = BG <3.79>

Then
= C+yt+yp+yb-A ' -xb-max{xp-A ! +B4 ,C-N~= 2+yt_A +‘yp}

C*Yt*yp+yb-A'-xb+min{-xp+A'-34,-c+n+2_yt+A._yp}

min{c+yt+yp+yb-A'-xb-xp+A'-B4,cfytﬁypfyb-A =Xy =CH+2-y +A -yp}

Bg

Which again requires that

= min{c+yt+yp-xp-B4,n+2}

Bg = Ctyy*ypx,-By <3.80> o

..............................
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for a solution to exist. Then, ;é-
< = - - -l= ‘-'*f !
! Be c+yt+yp X, max{X,,C-n-2+y,} }L:
y = CHY R X HmIn{ Xy mcni2-y, ) f;;

= mi X = -X - - _‘:

m1n{c+yt+yp xp xt,c+yt+yp xp cn+2 yt} i:f

= m1n{yt+c-xt+yp-xp,yp-xp+n+2} Sy

] Also, Yp 2 Xps and n > M, so M+l can not be greater than yp-xp+n+2. i;_
Thus, stability requires that

Ml > (ypre-x,) + (y,-xp) e

- i

Finally, N
_ M+l > rit(s)} + r{p(s)} <3.81> ]

) Equations 3.70 and 3.81 are equivalent to Equation 3.51, thus proving ?3

Lemma 3.2. ey

EOP o

If the conditions are met in Lemma 3.1 and Lemma 3.2, then a
compensator exists that will stabilize the feedback loop and meet the
initial n-th derivative condition. At this point, however, there is
no guarantee that such a compensator will meet all other constraints

also, which is the final goal. Thus, a complete parameterization meeting

the n-th derivative constraint will now be derived. Then this E}
parameterization will be analyzed to see when it will also meet the .,L

- v

constraints {yo,...,yn_l}. %;

. :;.. ¥
Lemma 3.3 &

For the system in Figure 4, described by Equation 3.12, iff the

.........
2
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conditions r{t(s)} + r{p(s)} < M+1, and (dt(s),dp(s)) = 1 are met,
n
then a compensator exists that stabilizes both w(s) and zn(s). In
this case, c(s) is described by Equation 3.8, where the complete
parameterization for w(s) is
d,(s)
- - _ n
_w(s) = wn(s) (up(s)na(s)nt(s) nr(s) ErT;jdus(s) + da(s)e(s) <3.82>
n n n n n n
whenever w(s)np(s) + vp(s) js not equal to zero. The function e(s) is
arbitrarily stable, an(s) is per Equation 3.19, and us(s) (and vs(s))
n n
is stable, and satisfies
u_(s)n (s)d (s)n.(s) + v (s)d_ (s) =1 <3.83>
Sp P P t Sn 4
With wn(s) described per Equation 3.82
da(s)
z (s) = (u_(s)n_(s)n_(s)-n (s) 57=7) v.(s)
n p a, tn ™ drisi Sn
-nags)dp(s)ntgs)e(s) <3.84>

Proof
To admit stable solutions, Property 3.10 requires stable gn(s),

kn(s), and xn(s). By Lemma 3.1, (dt(s),dp(s)) = 1 is necessary and
n

sufficient to stabilize kn(s). By Lemma 3.2, r{t(s)} + r{p(s)} < M+l

is N & S to stabilize gn(s) and xn(s), by guaranteeing that (dr |dc ).
n n
Thus, the conditions are justified.

Assume these conditions are met. Then, Equation 3.12 has been

modified to Equation 3.36 (omitting the variable s and subscript n during

« rF <
i Fl

T . .
b RN
e T e e

v
P
N
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manipulation),

Upn n,-X i

+ = I

zdc wnanbnt 5
m mb . -",

a bl

unn, - a
- D Dmtm r <3.85>
ab

Also, bn(s) was defined by

ba(s) =TT = T(s)
n tnS bnS

But, (dp(s),dt(s)) 1, so we can let

n

dp(s) = nbﬁs) s m(s) =1 5 d(s)=d(s) <3.86>

3

S

3
LT
Lt T

Then, by Equation 3.26,

dtgs) = mags)mbas)dcﬁs)

=m s)dc(s)

(
8 " n

But, by <3.21>, 2

dt£S) = ma£5)da£5)

so that

dy(5) = dc(s)

Then, by Property 3.9, there exist stable us(s) and vs(s) such that
n n

........
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u (s)n_(s)n_(s)n_(s) + v.(s)d (s) =1
Sp an bn t Sn cn
This can be modified to
u_(s)n_(s)d (s)n,(s) + v.(s)d.(s) =1 <3.87>
Sp 3 P tn Sn %n
Also, <3.85> can be modified as follows.
nrdt
unn, - d
zd +wn_nn, = ppt r
c abt mamb
nrdt
unn, - d
-_pDt r
zda + w"adp"t -
a
unn n d
- _ppt_rt
M My %
u.nn nm.d
-_ppt_"raa
EE madr
N
da
zda + wnadpnt = upna"t - nr i <3.88>

The right side is stable since drn|dan(dan = dcn).

Thus to find particular solutions, multiply by Equation 3.87 as follows.

d
= - _a
zda + w"adpnt (upna"t n. dr)'(vsda + usnadpnt)

d d
i ) a . a
{(upnant n, 3:)vs}da + {(upnant n. H:)us}"adp"t <3.89>

P
o4
2 A ]

Ik

ee'e

v
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solutions are then equal to
d,(s)
- n
= (up(s)naﬁs)ntis) - nrn(s) a;rgjousgs)
n
d (s)
- n
= (up(s)nags)ntﬁs) - nrgs) a;rgy)vsﬁs) <3.90>
n

To find the complete solution set, we also need the homogeneous

solutions.

Typcially, this is accomplished by guessing the homogeneous

solutions that cause the left side of the equation (here, Equation 3.89)

to equal zero. Then, the guesses are tested to verify that they are in KPC
S
fact the homogeneous solutions. Thus, first guess that tt:s
h _ 323
w = dae 'T,

zh = -ndn.e <3.91>

apt :
where e(s) is arbitrarily stable, so that

zhd + whn dn, = (-ndne)d +dendn =0 'ui
a apt apt’a a_apt JRSR
as desired, verifying that <3.91> are homogeneous solutions. We must Eif
also test that all homogeneous solutions are of the form of <3.91>. To é:'
do this, assume that gz(s) and g:(s) are stable, and satisfy C*;
h h ) N
z da +w nadpnt =0 <3.92> ;.:._...
and define the function e(s) by a;:
o o
=N <3.93> el
d R\
N
Clearly, ~
w =ed <3.94>
i
1
S A
IR W R _

S
. PP .
L R
e [T
s Ty .
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P

i and it follows from <3.89> that

: -ed_n_d n

y zh = _‘_'lda_E._t = -n.dn,.e <3.95>
N = a apt-

)

. showing that ﬁh and ih have the form of Equation 3.91. Finally, to

insure the completeness of the solution set, e(s) must be shown to be

v,
(]

T ’ LI AR A .
A - TSy MR

stable. To do this, the coprimeness properties of na(s) and da(s), and
n n

of nt(s) and dt(s) are needed, as follows.
n

n
!Lh
es= q(uana +v,d,)

h ﬁhuana
W, * Ch (ugny + vedy)

h
YhUanatt"t + L l"anav'cdt

= a d a ?a

Invoking m.d. = d, and (dtn,dp) =1,

h

d w,u_h a.n
_.h WU NaViMa%a | ¥hta"aUelt
e=uv,* da * da (utpdt ¥ thdp)
d.
_.h h Eh“'anaut‘.ntvtp p
e=wv, +wunyvm + "—"huanaut"tutpma + a <3.96>
Also, by modifying Equation 3.92 yields
h
-wndn
_{h = _:_%_M <3.97>
a

Thus, substituting <3.97> into <3.96> leads to

_n h h
e=wv, +wunyvm + WaUeUepTy = 24U Yep <3.98>
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which proves e(s) is stable since it is the product and sum of stable
functions. Therefore, since the complete solution set is the sum of the
particular solution and the homogeneous solution, Equation 3.82 describes

the general solution set for w(s), and zn(s) is described by <3.84>.

To complete the proof, we must show that at least one stable e(s)
leads to a w(s) such that w(s)np(s) + vp(s) is not identically equal to
zero, in which case since this is the denominator of the compensator,
the resulting compensator function would be undefined. Thus, again

omitting the variable s and subscript n,

d
- - a
wnp + vp {(upnant n. H:)us + dae}np +vp
da
= {(upnant -n, a:)usnp + vp} + edanp <3.99>

The function da(s) is not zero since it is the denominator of an(s).
n

Also, if np(s) is not zero, then w(s)np(s) + vp(s) is a non-trivial
function of e(s), and is therefore not identically zero for all e(s).
If np(s) is equal to zero, then <3.7> implies that vp(s) is miniphase,
and therefore can not be equal to zero. Thus, in this case

w(s)np(s) + vp(s) = vp(s) is not equal to zero. Therefore, the proof
is complete.

EOP

3.6 Simultaneous Derivative Constraints

Clearly, Lemma 3.3 could be used to find a compensator meeting all

initial response constraints simultaneously by applying it to each and

=

&
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every separate constraint, from which the resulting parameterization
would be the intersecting parameterization set of all the individual
parameterizations. This could require a great deal of computation
since tn(s),rn(s), and the resulting computed functions such as an(s)

2 depend on n. This normally will not be required though. Usually (and
possibly always) solving just the n-th derivative case also will guarantee
solving the 0-th through (n-1)th cases. A set of necessary and sufficient
conditions for this guarantee have not been found, but the following
lemma proves that usually only the n-th derivative parameterization will

need to be computed.

Lemma 3.4

g Suppose the coﬁditions are met to apply Lemma 3.3 for the n~th
derivative initial response constraint, so that wn(s) is computed per
Equation 3.82, resulting in zn(s) per Equation 3.84. Then any compensator
based on Equations 3.82 and 3.8 will stabilize not only zn(s), but also

z5(s) through z_,(s), whenever

1. The input t(s) has fewer than three poles at s = 0. <3.100>
or
2. If the above condition is not met, then <3.101>
{(#poles t(s) at s = 0) - 3} < {# zeros p(s) at s = 0}.
y Proof
zn(s) is given by
= - + -
z,(s) = t (s){-wls)n (s)d (s) +u (s)n (s)} - v (s)
n .
= n+2t(s) J (s) -z s"'1+1yi <3.102>
Vol i=0
Where Hy u1(s) is stable whenever w(s) is stable, as is the case in
2

Equation 3.82. Then, manipulating <3.102> leads to

...............................
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2z (s) n-1 .
n _ _n+l n-i
S + yn =3 t(S)HV2u§S) - %':0 S ¥; <3.103>

But, using the same set of constraints,

-1 )
(n-1)+2 =3 (n-1)-i+1
z. ,(s) =s t(s)H. (s} -z s Y.
n-1 volup i=0 i
n-1 .
= s"+1t(s)Hv u(s) -z s"'1yi <3.104>
2°1 i=0
Comparing <3.103> and <3.104> Tleads directly to
z (s)
Zn_l(s) alra + Yn <3.105>

Thus, since Yn js a constant, its sufficient but possibly not necessary
to prove the zn_l(s) is stable by proving s divides Z, Then, if w(s)

is given by <3.82>, zn(s) is given by <3.84> to be

d,(s)
zn(s) = {up(s)naﬁs)ntﬁs) - nrﬁs) 3;%57* vsﬁs)
n

- naﬁs)dp(s) ntﬁs)e(s)

where drn(s) divides da(s), so that zn(s) is stable. The above
n

equation can be modified to

»
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PP IPEPEI TR A X
A A I R | PRI A
P R N LBy o % .

P PP B g
aa



ARALE RN S o e 0 pon o ke b Al ek ants ) el el Sl Sl A

61
zn(s) = ntﬁs)nags){up(s)vsﬁs) - dp(s)e(s)}
d,(s)
n
- nrr('S){a':’(]-ST VSn(S)} <3.106>

Clearly, nr(s) will always be divisable by s, because <2.39> describes
n

rn(s) as a polynomial in s with no constant term. Thus, zn(s) will be

divisable by s whenever either nt(s) or na(s) are divisable by s
n n

(possibly other times too), since zn(s) will then be the sum of terms

divisable by s.

Therefore, first consider nt(s), as follows.
n

Generally,
0 (x,)
t(s) = —‘C‘—'E-—— <3.107>
s70,(y,)

is a representation for t(s), where the s¢ term represents the only
poles or zeros at s = 0, so that c is any integer. This leads to

n+2-c

s 0 (x,)
- N¥2 - u'"t
tn(S) =S t(S) ___OT);—)_— <3.108>
u’t
Obviously, nt(s) will be divisable by s iff
n
n+2-c > 0 <3.109>

Now, if <3.109> holds for n, then z _,(s) is stable. Then, this entire
argument can be repeated for the case zn_l(s) is stable to show when

Zn-Z(S) is stable, which will result in the inequality

(n-1)+2-¢ > 0 <3.110>

.
I
[4

e 10
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Thus, to stabilize zo(s) through zn_l(s), the worst case inequality,
which proves all zi(s), i <0 < n-1, are stable, is the case when n =1
and (n-1) = 0. The resulting inequality is

1+2-c > 0
or

c<3 <3.111>
which is equivalent to saying t(s) has fewer than three poles at s = 0.
Therefore, <3.100> is proved.

If nt(s) is not divisable by s, another condition that zn(s) is
n

divisable by s is that na(s) is divisable by s. Pursuing this case, first
n

assume that nt(s) is not divisable by s, so that Equation 3.111 does
n

not hold, but that

0 (x,)
t (s) = =t <3.112>
s 0,(¥¢)
where c-n-2 > 0 is a general expression for tn(s) based on Equation
3.107.

Thus,

c-n-2
s 0,(v;)

d,(s) =
tn Os(ﬁhx{xt,c-n—2+y£§7

<3.113>

Also, describe p(s) generally by

D
s0 (x)
p(s) = 55 <3.114>

u-p

where D > 0, and Ou(yp) may be divisable by s, so that D represents the




. S

63
number of zeros the plant has at s = 0. Of course this leads to
D
s0 (x)
- u

np(S) mg— <3.115>
since r{p(s)} > 0 is a general assumption. This of course leads to,
by definition,

D
) np(s) s Ou(xp) Os(max{xt,c-n-2+yt})
an(S = (ST = 0 (y ) . C-n-2 <3.116>
tn S'Up S Ou(yt)
Obviously, na(s) has max{0,D-c+n+2} zeros at s equal to 0. Thus, if
n

D-c+n+2 > 0 <3.117>

for all n > 1, then na(s) will be divisable by s. Studying the worst
n

case again of n = 1 leads to the general requirement that

D-c+142 > 0
or

¢c-3 <D <3.118>

By our definitions, Equation 3.118 is equivalent to the statement of
Equation 3.101, thus the proof is complete.
EOP

3.7 Initial Response Theorem and Parameterization

The exciting climax of this thesis is finally upon us! The
groundwork has all been laid, so the Initial Response Theorem and the

Initial Response Parameterization can now be given.

Theorem 3.2 - Initial Response Theorem (IRT)

For the system in Figure 2, assume that r{p(s)} > 0. Also assume

DRI
-~




1. The input t(s) has fewer than three poles at s = 0.
or
2. If the above condition is not met, then
{(# poles t(s) at s = 0)-3} < {# zeros p(s) at s = 0}
Then a set of compensators c(s) exists that will simultaneously stabilize

the feedback loop H, u(s) (without RHP pole-zero cancellations between
271

p(s) and c(s)), and meet the initial condition constraints

{vg(0+),...,v%(0+)} = Ygse-eo¥y) iff:
1. r{t(s)} + rip(s)} <M+ 1.
and

2. (dt_(s),dp(s)) = 1.
J

Where Y; = 0 for i < M, and Yu # 0.

Proof

The lemmas and properties derived earlier were dependent on the
assumption that r{p(s)} > 0. Then, Theorom 3.1 and Figure 4 lead to
Equation 3.12, which defines the complete set of compensators that
meet both feedback loop stability and the n-th derivative initial
response constraint are those which admit stable w(s) and zn(s). Next,
Property 3.10 states that both w(s) and zn(s) will be stable iff gn(s),
kn(s), and xn(s) admit stable solutions, as described per Equations 3.33,
3.34, and 3.35. Then, Lemma 3.1 and Lemma 3.2 give the necessary and

sufficient conditions to stabilize these three quantities to be

(dy(s),dp(s)) =1 <3.119>
n

- - » - - - - - . - . - - - . - - .. - T .
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and
3 r{t(s)} + r{p(s)} <M+ 1 <3.120>
‘ where y; = 0 for 1 < M, and M # 0. Thus, <3.120> leads directly to
condition 1 in the theorem, while <3.119> is dependent on the derivative
constraint considered. Finally, Lemma 3.4 states that if Equations 3.100
; or 3.101 are satisfied, then the n-th derivative solution also stabilizes
all lower derivatives. Therefore, to get all constraints, let n = j
for the constraints {yo,...,yj} leading to the assumptions numbered
1 and 2 in Theorem 3.2, as well as dtgs) = dtgs) in Equation 3.119, so
‘ that (dtgs),dp(s)) = 1 is required.
- EOP
To reiterate, as the proof for Lemma 3.4 showed, <3.119> and <3.120>
may not be necessary assumptions, but were shown to be sufficient. Also,

obviously these pose very little restriction anyway, so that this point

will not be labored further. Now the paramterization will be given for

the compensators that achieve these constraints.

Theorem 3.3 - Initial Response Parameterization (IRP)

Given that the assumptions and conditions posed in the Initial i
Response Theorem are met for the constriants {v%(O*),...v%(O*)} = ;fﬁ
{yo,...,yj}. Then, let the plant be comprimely represented by

n_(s)

p(s) = Eray

p

so that stable up(s) and vp(s) exist such that

up(s)np(s) + vp(s)dp(s) =1
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D Lo
Also, define B
- &
.: nt(s) :::S‘
5 _ .jre _ j "
4 tj(S) = s t(s) = a::zg)- *:
G J )
where nt(s) and dt(s) are coprime. Next, define E?'
o J J o
: 3 L) oy
j-i+ j
r.(s) =z y. = 3_%_T
J i=0 1 th ;
where n (s) and d_(s) are coprime, and let ;fi
r: r R
J J
n_(s) 3
~ n (S) a.; .'\:.
3 aj(s) T4 (sy " d iS5 o
N ts a.
X J J
where na(s) and da(s) are coprime. Also, define stable us(s) and
J J J :
v_(s) such that e
S DAY
J o
u (s)n_{s)d (s)n.(s) + v_(s)d_(s) =1 "
sj aj P tj Sj aj e
Then, the complete set of compensators that stabilize the feedback Toop ;»
for the system in Figure 2 (without pole-zero cancellations between S\

p(s) and c(s)), and meet all j + 1 initial response constraint is given

; -w(s)d (s} + u (s)
. c(s) = P P |
; wisTn (5] + v (5] E
. N
o ;"_-!
o where w(s) is stable, and given by ;:i
' d (s) 211
a. 1
5 w(s) = {up(s)na§s)nt§s) ""rgs) H;%ET} usgs) + dags)e(s) —

R S

PRI
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J where e(s) is an arbitrarily stable function such that w(s)np(s) + vp(s) :;F
y is not identically zero. ;::
Proof Y
Theorom 3.2 states the assumptions and resulting N & S conditions =
for a parameterization to exist. Also, Lemma 3.3 gives that complete %i?
parameterization for w(s) leading to the n-th derivative constraint to i:‘
be met. If we lTet n = j where j is the maximum order derivative initial !?;
constraint, then the assumptions in the‘IRT guarantee that for n = j in i};?
i Equation 3.82, all constraints will simultaneously be met. Also, the ;;7
proof for Lemma 3.3 showed that at least one e(s) exists so that 5??
w(s)np(s) + vp(s) is not zero, in which case the resulting compensator E%:
: would be undefined, even though zn(s) and w(s) may be stable by Equation i;
3.12. Finally, c(s) was defined in Equation 3.8 exactly as stated in ;:1
Theorom 3.3. ;i}
2 EOP -
3.8 Summary :f
:? The IRP can be used to find the complete set of compensators ;
- that will meet any given initial response conditions that are within ke
the bounds of the constraints and assumptions given in the IRT. This
then gives the designer a tool that may help him to shape the transient
response of a system as he desires. For exampie, designing for large %5
positive initial values on the initial response derivatives should lead ;E;
to a "faster" response than designing for smaller initial values on 225

the same derivatives.
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Theoretically, these theorems could be used to design precisely iit

.
an entire system response. This can be seen by representing the Hfu
Y
frequency response of the entire system in its power series form, as ﬁ%é
follows. £
.

H(s) = a sl a,s'2 ras S eas e, <3.121> wed
0 2 3 .;.._.

Of course, this transforms to the time domain as e

) a a !5'
. _ 2.2 3.3 T
3 h(t) = {ag + at+ =ttt +.. () =
N ° A E;i
- - L Ao
: = §=0 Tt u(t) <3.122> ~5

It is easy to see that the initial i-th derivative is equal to ai,i.e.,

h'(0%) = a, <3.123> e

But, the IRP allows one to specify any and all h'(0%) whenever the }i%

bounds of the IRT are not crossed. Thus, for any i, a; can be specified, Eﬁ?

o

and looking back to <3.121>, one can see that any or all (theoroetically) T

A of the power series for the transfer function can be specified! by
B

.; _..::‘.
! pho
- e

>




CHAPTER IV
EXAMPLES

4.1 Introduction

In the previous chapter, the IRT and IRP were derived. Now,
several examples will be given which explore the usefulness of these

theoroms.

4.2 Introduction Example

In Section 1.2, an example problem was given. For that example,
Equation 1.2 and 1.8 were given to describe the set of compensators that
meet the desired constraints, but the equations were not derived. Thus,
the IRT and IRP will now be used to solve this problem. Figure 1
pictured the system in question, which is given again in Figure 5. For
the system, the constraints given were that the feedback loop be stable,

+ =
and v2(0 ) equal 3( yo).

For this system, r{p(s)} = 1, and the input has fewer than three
poles at s = 0 (it actually has none). Therefore, the assumptions
necessary for the IRT are met. Then, since Yo = 3, M is equal to zero.

Thus, the

§ —=t 1 c(s) -

|-

vo(t)

Figure 5. Example From Introduction
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b
first condition given in the IRT is met, i.e.,

| -8
: r{t(s)} + r{p(s)y <M+1 ? =7
3 o
: 0+1=1<0+1=1 _ﬁ
Also, since j = 0, Equation 2.39 leads to :~‘.

B
Y

tols) = s2%e(s) = 52 E:’:-
v ‘

This can be coprimely represented by .

B

BES 2

< n S ’;
¢ (s) = {stD)” . to o

0 1 (s) <4.1> o
0 P
(s+1) 5

The plant can be coprimely represented by "_'.:

1 -

=7 nh,(s)

_ 1 _ s+l _ o

p(S) - S~1 = S~1 - d (S) <4.2>

S+ P -

Obviously, (dt( s),d (s)) 1, so the IRT dictates that a set of

0
compsensators exists that meets the desired constraints. J

Now, moving on to the IRP, there must exist stable up(s) and vp(s)
- such that w_
+ = -
up(s)np(s) vp(s)dp(s) 1

or 'i'

u(s) 1_+y (s) <4.3> o

p' s+l s+1 : A
Obvious solutions to <4.3> are :f;;f'

ul(s) =2 .-:;'-l.-

p X

and <4.4> =~

" vp(s) =1

.-.AIF -
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Also, &
.
I nls) 3
- - -_stl _ 0 Y
rols) = s¥ =38 = 1= 70y «4.5> e
s+l To
!E'
1 n_(s) 2
n (s) — a .
_ _ S+l - -1 __0
ao(s) = 35157 = =3 s+1 1 da(§7 <4.6>
There also must exist stable us(s) and vs(s) such that
0 0
u_(s)n_(s)d (s)n.(s) + v_(s)d.(s) =1
Sop g P to o ag
or
2
uS(S) S—<'§-—1%— + v gf,_l—l‘ =] <4, 7>
0 (s+1) 0
A little calculation yields adequate us(s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>